Complementary Information ### **About the Reported Detection Limit (RDL):** The values in this column represent the minimum amount required for the detection of a parameter, according to CARO Analytical Services, Kelowna. The symbol "<" (*less than*) is used when a parameter is in too weak concentration to be detected. ### **About the Maximum Accepted Concentration (MAC):** The MAC values in this column are health-based guidelines, as reported by Health Canada in the document *Guidelines for Canadian Drinking Water*, May 2008. The AO values are based on aesthetic considerations (Aesthetic Objectives). The minimum limit for "Oxygen, Dissolved" is from the Ministry of Environment of British Columbia. ### About the general parameters analyzed: ### Nitrogen (N) Nitrogen forms 78% (volume in dry air) of the atmosphere. It is a mostly inert gas, and is colorless, odorless and tasteless. In water, it is mainly found in the form of these mineral compounds: **Ammonia (NH3):** is a toxic waste product of the metabolism in animals, but also an important source of nitrogen for some living systems. Some plants rely on ammonia and other nitrogenous wastes incorporated into the soil by decaying matter, as other crop species will be harmed by it. It is used in fertilizers, cleaners, refrigeration, fuel, etc. Its toxicity does not usually cause problems to humans and other mammals, as a specific mechanism exists to prevent its build-up in the bloodstream (the liver converts it to urea). However, fish and amphibians lack this mechanism. Ammonia is, therefore, highly toxic to aquatic animals. **Nitrate and Nitrite (NO3 and NO2):** Nitrate is a naturally occurring chemical nutrient that is left after the breakdown or decomposition of animal or human waste (nitrite is a result of nitrate's thermal decomposition). Even though nitrate isn't as toxic as nitrite or ammonium, high levels can cause *methemoglobinemia* in humans (atoms in hemoglobin are unable to carry oxygen molecules) and death for fish. As a rule, 30ppm (parts per million, corresponding to 30 mg\L) can inhibit growth, impair immune system and cause stress in some aquatic species. When found in water, it is an indicator of the presence of a broad array of chemical contaminants like agricultural and residential runoff (fertilizers and sewage), soil contamination, industrial waste, etc. ### According to Health Canada, these are the guidelines for Nitrogen (N): | Water Use | Nitrate as N mg\L | Nitrite as N mg\L | Ammonia as N mg\L | |--------------------|-------------------|-------------------|--------------------| | Drinking Water | 10 maximum | 1 max | None proposed | | Fresh Aquatic Life | 31.3 max | 0.06 max | Depends on the | | | | | Temperature and Ph | | | | | of the water* | | Livestock Watering | 100 maximum | 10 maximum | None proposed | | Wildlife | 100 maximum | 10 maximum | None proposed | ^{*}U.S. EPA is planning to re-evaluate ammonia criteria based on new studies with freshwater mussels. ## Phosphorus (P): Phosphorus is a very reactive, highly flammable substance, generally found in minerals. It is a component of DNA and is part of what forms all cell membranes. It is therefore an essential nutrient for all living beings. It is used in fertilizers, explosives, matches, fireworks, pesticides, toothpaste and detergents. But when it is found in water in too high concentrations, it can lead to algae blooms. ### **Turbidity:** Turbidity refers to the cloudiness or haziness of a fluid caused by individual particles (suspended solids) that are generally invisible to the naked eye, similar to smoke in the air. Turbidity levels should be as low as possible in drinking water (see the document *Guidelines for Canadian Drinking Water*, May 2008, for appropriate guidelines when testing a personal well or filtered water). #### **Coliforms:** Coliforms are, mostly, organisms of fecal origin. Their presence indicates other pathogenic organisms like bacteria, viruses, protozoa (micro-organisms like algae) and many multi-cellular parasites. **Escherichia coli (E. coli):** is a member of the coliform group, almost exclusively of fecal origin. Typically, E. coli forms 11% of the coliforms in human feces. Most E. coli strains are harmless, but some can cause serious food poisoning. These coliforms are not always confined to the intestine, but their ability to survive for brief periods outside the body makes them an ideal indicator to test for recent fecal contamination. All virulent forms of E. coli are found in human feces, and some of them also in warm-blooded animals like pigs, goats, deer, cattle, horses, dogs and cats, etc. Ideally, none should be detected in drinking water. Boiling the water for at least a minute is advised if the test is positive. ### **Dissolved Oxygen:** Oxygen is the single most important component of surface water for self-purification processes and the maintenance of aquatic organisms that utilize aerobic respiration. According to the Ministry of Environment of British Columbia, in order to sustain the aquatic life of all stages other than buried, a minimum concentration of 5 mg\L should be maintained. # About the chemical and physical parameters analyzed: - 1. health based and listed as a maximum acceptable concentrations (MAC); - 2. based on aesthetic considerations and listed as an aesthetic objectives (AO); or - 3. established based on operational considerations and listed as an operational guidance values (OG). In general, the highest priority guidelines are those dealing with microbiological contaminants. Any measure taken to reduce concentrations of chemical contaminants should not compromise the effectiveness of disinfection. | Table 2. | Chemical and Phys | ical Param | eters | | | | |-------------------------|---|------------------|---|--|--|---| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | Т | Aluminum (1998) | | OG:
< 0.1
(conventional
treatment);
< 0.2 (other
treatment
types) | Aluminum salts
used as coagulants
in drinking water
treatment;
naturally occurring | | Current weight of
evidence does not
indicate adverse health
effects at levels found
in drinking water. | | I | Ammonia (1987) | None
required | | Naturally
occurring; released
from agricultural or
industrial wastes;
added as part of
chloramination for
drinking water
disinfection | | Guideline value not
necessary as it is
produced in the body
and efficiently
metabolized in healthy
people; no adverse
effects at levels found
in drinking water. | | I | Antimony (1997) | 0.006 | | Naturally occurring
(erosion); soil
runoff; industrial
effluents; leaching
from plumbing
materials and
solder | Health basis of
MAC:Microscopic changes
in organs and tissues
(thymus, kidney, liver,
spleen, thyroid) | MAC takes into consideration analytical achievability; plumbing should be thoroughly flushed before water is used for consumption. | | I | Arsenic (2006) | 0.010
ALARA | | Naturally occurring
(erosion and
weathering of
soils, minerals,
ores) | Health basis of MAC:Cancer (lung, bladder, liver, skin) (classified as human carcinogen) Other: Skin, vascular and neurological effects (numbness and tingling of extremities) | MAC based on
treatment
achievability; elevated
levels associated with
certain groundwaters;
levels should be kept
as low as reasonably
achievable. | | I | Asbestos (1989, 2005) | None
required | | Naturally occurring
(erosion of
asbestos minerals
and ores); decay
of asbestos-
cement pipes | | Guideline value not
necessary; no evidence
of adverse health
effects from exposure
through drinking water. | | P | Atrazine (1993) | 0.005 | | Leaching and/or
runoff from
agricultural use | Health basis of MAC: Developmental effects (reduced body weight of offspring) Other: Potential increased risk of ovarian cancer or lymphomas (classified as possible carcinogen) | MAC applicable to the sum of atrazine and itsN-dealkylated metabolites; persistent in source waters. | | P | Azinphos-methyl
(1989, 2005) | 0.02 | | Leaching and/or runoff from | Health basis of MAC: Neurological effects | All uses to be phased out by 2012. | | Table 2. | Chemical and Phys | ical Paran | neters | | | | |-------------------------|---|------------------|-----------------------|---|--|--| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | agricultural use | (plasma cholinesterase) | | | I | Barium (1990) | 1.0 | | Naturally
occurring; releases
or spills from
industrial uses | Health basis of
MAC:Increases in blood
pressure, cardiovascular
disease | | | O | Benzene (2009) | 0.005 | | Releases or spills
from industrial
uses | Health basis of MAC:Bone marrow (red and white blood cell) changes and cancer (classified as human carcinogen) Other: Blood system and immunological responses | additional exposure through showering and | | 0 | Benzo[<i>a</i>]pyrene
(1988, 2005) | 0.000 01 | | Leaching from
liners in water
distribution
systems | Health basis of
MAC:Stomach tumours
(classified as probable
carcinogen) | | | I | Boron (1990) | 5 | | Naturally
occurring; leaching
or runoff from
industrial use | Health basis of MAC:Reproductive effects (testicular atrophy, spermatogenesis) Other: Limited evidence of reduced sexual function in men | MAC based on treatment achievability. | | DBP | Bromate (1998) | 0.01 | | By-product of
drinking water
disinfection with
ozone; possible
contaminant in
hypochlorite
solution | Health basis of MAC:Renal cell tumours (classified as probable carcinogen) | MAC based on analytical and treatment achievability | | P | Bromoxynil (1989,
2005) | 0.005 | | Leaching or runoff from agricultural use | Health basis of MAC:Reduced liver to body weight ratios | | | I | Cadmium (1986, 2005) | 0.005 | | Leaching from
galvanized pipes,
solders or black
polyethylene
pipes; industrial
and municipal
waste | Health basis of MAC:Kidney damage and softening of bone | | | I | Calcium (1987,
2005) | None
required | | Naturally occurring
(erosion and
weathering of
soils, minerals,
ores) | | Guideline value not
necessary, as there is
no evidence of adverse
health effects from
calcium in drinking
water; calcium
contributes to hardness | | P | Carbaryl (1991,
2005) | 0.09 | | Leaching or runoff
from agricultural
use | Health basis of
MAC:Decreased kidney
function (may be rapidly
reversible after exposure
ceases) | | | P | Carbofuran (1991, 2005) | 0.09 | | Leaching or runoff
from agricultural
use | Health basis of MAC:Nervous system effects (cholinesterase inhibition) and growth suppression | | | 0 | Carbon
tetrachloride (2010) | 0.002 | | Industrial effluents
and leaching from
hazardous waste
sites | Health basis of MAC:Liver toxicity Other: Kidney damage; liver tumours (classified as | MAC considers
additional exposure
through showering and
bathing | | Table 2. | Chemical and Phys | ical Paran | neters | | | | |-------------------------|---|------------------|-----------------------|---|---|--| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | | probable carcinogen) | | | D | Chloramines (1995) | 3.0 | | Monochloramine is used as a secondary disinfectant; formed in presence of both chlorine and ammonia | Health basis of
MAC:Reduced body weight
gain
Other: immunotoxicity
effects | MAC is for total
chloramines based on
health effects
associated with
monochloramine and
analytical achievability | | DBP | Chlorate (2008) | 1 | | By-product of
drinking water
disinfection with
chlorine dioxide;
possible
contaminant in
hypochlorite
solution | Health basis of MAC:Thyroid gland effects (colloid depletion) | Formation of chlorate ion should be prevented, as it is difficult to remove once formed; chlorate formation should be controlled by respecting the maximum feed dose of 1.2 mg/L of chlorine dioxide and managing /monitoring formation in hypochlorite solutions. | | I | Chloride (1979,
2005) | | AO: ≤ 250 | Naturally occurring
(seawater
intrusion);
dissolved salt
deposits, highway
salt, industrial
effluents, oil well
operations,
sewage, irrigation
drainage, refuse
leachates | | Based on taste and
potential for corrosion
in the distribution
system | | D | Chlorine (2009) | None
required | | Used as drinking
water disinfectant | Guideline value not
necessary due to low
toxicity at concentrations
found in drinking water | Free chlorine
concentrations in most
Canadian drinking
water distribution
systems range from
0.04 to 2.0 mg/L | | D | Chlorine dioxide
(2008) | None
required | | Used as drinking
water disinfectant | A guideline for chlorine dioxide is not required because of its rapid reduction to chlorite in drinking water | A maximum feed dose of 1.2 mg/L of chlorine dioxide should not be exceeded to control the formation of chlorite and chlorate | | DBP | Chlorite (2008) | 1 | | By-product of
drinking water
disinfection with
chlorine dioxide | Health basis of MAC:Neurobehavioural effects (lowered auditory startle amplitude, decreased exploratory activity), decreased absolute brain weight, altered liver weights | Chlorite formation should be controlled by respecting the maximum feed dose of 1.2 mg/L of chlorine dioxide and managing /monitoring formation in hypochlorite solutions. | | P | Chlorpyrifos (1986) | 0.09 | | Leaching and/or
runoff from
agricultural or
other uses | Health basis of
MAC:Nervous system
effects (cholinesterase
inhibition) | Not expected to leach significantly into groundwater | | I | Chromium (1986) | 0.05 | | (erosion of | Health basis of
MAC:Enlarged liver,
irritation of the skin,
respiratory and | Chromium (III) is an
essential element; MAC
is protective of health
effects from chromium | | Table 2. | Chemical and Phys | ical Paran | neters | | | | |-------------------------|--|---------------|-----------------------|---|---|---| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | industrial uses | gastrointestinal tracts from chromium (VI) | (VI) | | Т | Colour (1979,
2005) | | AO: ≤ 15
TCU | Naturally occurring
organic
substances,
metals; industrial
wastes | | May interfere with
disinfection; removal is
important to ensure
effective treatment | | I | Copper (1992) | | AO: ≤ 1.0 | Naturally
occurring; leaching
from copper piping | Copper is an essential element in human metabolism. Adverse health effects occur at levels much higher than the aesthetic objective | , | | I | Cyanide (1991) | 0.2 | | Industrial and
mining effluents;
release from
organic compounds | Health basis of MAC: No
clinical or other changes at
the highest dose tested | Health effects from
cyanide are acute; at
low levels of exposure,
it can be detoxified to a
certain extent in the
human body | | O | Cyanobacterial
toxinsMicrocystin-
LR (2002) | 0.0015 | | Naturally occurring
(released from
blooms of blue-
green algae) | Health basis of MAC:Liver
effects (enzyme inhibitor)
Other: Classified as
possible carcinogen | MAC is protective of
total microcystins;
avoid algicides like
copper sulphate, as
they may cause toxin
release into water | | P | Diazinon (1986,
2005) | 0.02 | | Runoff from
agricultural or
other uses | Health basis of
MAC:Nervous system
effects (cholinesterase
inhibition) | Not expected to leach significantly into groundwater | | P | Dicamba (1987,
2005) | 0.12 | | Leaching or runoff
from agricultural or
other uses | Health basis of MAC:Liver
effects
(vacuolization, necrosis,
fatty deposits and liver
weight changes) | Readily leaches into groundwater | | 0 | 1,2-
Dichlorobenzene Table 2 footnote (1987) | 0.2 | AO: ≤ 0.003 | Releases or spills
from industrial
effluents | Health basis of
MAC:Increased blood
cholesterol, protein and
glucose levels | AO based on odour;
levels above the AO
would render drinking
water unpalatable | | 0 | 1,4-
Dichlorobenzene Table
2 footnote 2 (1987) | 0.005 | AO: ≤ 0.001 | Releases or spills
from industrial
effluents; use of
urinal deodorants | Health basis of
MAC:Benign liver tumours
and adrenal gland tumours
(classified as probable
carcinogen) | AO based on odour;
levels above the AO
would render drinking
water unpalatable | | 0 | 1,2-Dichloroethane
(1987) | 0.005 | | Releases or spills
from industrial
effluents; waste
disposal | Health basis of
MAC:Cancer of the
circulatory system
(classified as probable
carcinogen) | MAC based on
treatment and
analytical achievability | | 0 | 1,1-
Dichloroethylene
(1994) | 0.014 | | Releases or spills from industrial effluents | Health basis of MAC:Liver effects (fatty changes) | | | 0 | Dichloromethane (2011) | 0.05 | | Industrial and
municipal
wastewater
discharges | Health basis of MAC:Liver effects (liver foci and areas of cellular alteration). Other: Classified as probable carcinogen | MAC is protective of carcinogenic effects and considers additional exposure through showering and bathing | | 0 | 2,4-Dichlorophenol
(1987, 2005) | 0.9 | AO: ≤
0.0003 | By-product of drinking water disinfection with | Health basis of MAC: Liver effects (cellular changes) | AO based on odour;
levels above the AO
would render drinking | | Table 2. | Chemical and Phys | ical Paran | neters | | | | |-------------------------|--|------------------|-----------------------|---|---|---| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | chlorine; releases
from industrial
effluents | | water unpalatable | | P | 2,4-
Dichlorophenoxy
acetic acid (2,4-D)
(1991) | 0.1 | | Leaching and/or
runoff from use as
a weed controller;
releases from
industrial effluents | Health basis of MAC:Kidney effects (tubular cell pigmentation) | | | P | Diclofop-methyl
(1987, 2005) | 0.009 | | Leaching and/or
runoff from use as
a weed controller;
added directly to
water to control
aquatic weeds | Health basis of MAC:Liver effects (enlargement and enzyme changes) | Low potential for groundwater contamination | | P | Dimethoate (1986, 2005) | 0.02 | | Leaching and/or
runoff from
residential,
agricultural and
forestry use | Health basis of
MAC:Nervous system
effects (cholinesterase
inhibition) | | | P | Diquat (1986,
2005) | 0.07 | | Leaching and/or
runoff from
agricultural use;
added directly to
water to control
aquatic weeds | Health basis of MAC:Cataract formation | Unlikely to leach into groundwater | | P | Diuron (1987,
2005) | 0.15 | | Leaching and/or runoff from use in controlling vegetation | Health basis of
MAC:Weight loss, increased
liver weight and blood
effects | High potential to leach into groundwater | | 0 | Ethylbenzene
(1986, 2005) | | AO: ≤
0.0024 | Emissions,
effluents or spills
from petroleum
and chemical
industries | | Based on odour | | I | Fluoride (2010) | 1.5 | | Naturally occurring
(rock and soil
erosion); may be
added to promote
dental health | Health basis of
MAC:Moderate dental
fluorosis (based on
cosmetic effect, not health) | Beneficial in preventing dental caries | | DBP | Formaldehyde
(1997) | None
required | | By-product of
disinfection with
ozone; releases
from industrial
effluents | | Guideline value not
necessary, as levels in
drinking water are
below the level at
which adverse health
effects may occur | | 0 | Gasoline and its
organic constituents
(1986, 2005) | None
required | | Spill or leaking
storage tank | | No MAC due to complex composition of gasoline; strong taste and odour at concentrations well below those potentially eliciting adverse health effects (see benzene, ethylbenzene, toluene and xylenes for more information) | | P | Glyphosate (1987, 2005) | 0.28 | | Leaching and/or
runoff from various
uses in weed
control | Health basis of
MAC:Reduced body weight
gain | Not expected to migrate to groundwater | | DBP | Haloacetic acids - | 0.08 | | By-product of | Health basis of MAC:Liver | Refers to the total of | | Table 2. | Chemical and Phys | ical Param | eters | | | | |-------------------------|---|------------------|-----------------------|--|---|---| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | Total (HAAs) Table 2 footnote3 (2008) | ALARA | | drinking water
disinfection with
chlorine | cancer (DCA); DCA is
classified as probably
carcinogenic to humans
Other: Other organ
cancers (DCA, DBA, TCA);
liver and other organ
effects (body, kidney and
testes weights) (MCA) | monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), monobromoacetic acid (MBA) and dibromoacetic acid (DBA); MAC is based on ability to achieve HAA levels in distribution systems without compromising disinfection; precursor removal limits formation | | Т | Hardness (1979) | None
required | | Naturally occurring
(sedimentary rock
erosion and
seepage, runoff
from soils); levels
generally higher in
groundwater | Although hardness may have significant aesthetic effects, a guideline has not been established because public acceptance of hardness may vary considerably according to the local conditions; major contributors to hardness calcium and magnesium are not of direct public health concern | Hardness levels
between 80 and 100
mg/L (as CaCO ₃)
provide acceptable
balance between
corrosion and
incrustation; where a
water softener is used,
a separate unsoftened
supply for cooking and
drinking purposes is
recommended | | I | Iron (1978, 2005) | | AO: ≤ 0.3 | Naturally occurring
(erosion and
weathering of
rocks and
minerals); acidic
mine water
drainage, landfill
leachates, sewage
effluents and iron-
related industries | | Based on taste and
staining of laundry and
plumbing fixtures; no
evidence exists of
dietary iron toxicity in
the general population | | I | Lead (1992) | 0.010 | | Leaching from
plumbing (pipes,
solder, brass
fittings and lead
service lines) | Health basis of MAC:Biochemical and neurobehavioural effects (intellectual development, behaviour) in infants and young children (under 6 years) Other: Anaemia, central nervous system effects; in pregnant women, can affect the unborn child; in infants and children under 6 years, can affect intellectual development, behaviour, size and hearing; classified as probably carcinogenic to humans | Because the MAC is based on chronic effects, it is intended to apply to average concentrations in water consumed for extended periods. Exposure to lead should nevertheless be kept to a minimum; plumbing should be thoroughly flushed before water is used for consumption; most significant contribution is generally from lead service line entering the building | | I | Magnesium (1978) | None
required | | Naturally occurring
(erosion and
weathering of
rocks and
minerals) | | Guideline value not
necessary, as there is
no evidence of adverse
health effects from
magnesium in drinking
water | | P | Malathion (1986, 2005) | 0.19 | | Leaching and/or runoff from | Health basis of MAC:Nervous system | Not expected to leach into groundwater | | Table 2. | Chemical and Phys | ical Paran | neters | | | | |-------------------------|--|--|---|--|--|--| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | agricultural and other uses | effects (cholinesterase inhibition) | | | I | Manganese (1987) | | AO: ≤ 0.05 | Naturally occurring
(erosion and
weathering of
rocks and
minerals) | | Based on taste and
staining of laundry and
plumbing fixtures | | I | Mercury (1986) | 0.001 | | Releases or spills
from industrial
effluents; waste
disposal; irrigation
or drainage of
areas where
agricultural
pesticides are used | Health basis of MAC:Irreversible neurological symptoms | Applies to all forms of
mercury; mercury
generally not found in
drinking water, as it
binds to sediments and
soil | | P | 2-Methyl-4-
chlorophenoxyacetic
acid (MCPA) (2010) | 0.1 | | Leaching and/or
runoff from
agricultural and
other uses | Health basis of MAC:Kidney effects (increased absolute and relative weights, urinary bilirubin, crystals and pH) Other: Systemic, liver, testicular, reproductive/developmental and nervous system effects | Can potentially leach into groundwater | | 0 | Methyl tertiary-
butyl ether (MTBE)
(2006) | | AO: ≤ 0.015 | Spills from
gasoline refineries,
filling stations and
gasoline-powered
boats; seepage
into groundwater
from leaking
storage tanks | There exist too many uncertainties and limitations in the MTBE database to develop a health based guideline. | AO based on odour;
levels above the AO
would render water
unpalatable; as the AO
is lower than levels
associated with
potential toxicological
effects, it is considered
protective of human
health. | | P | Metolachlor (1986) | 0.05 | | Leaching and/or
runoff from
agricultural or
other uses | Health basis of MAC:Liver lesions and nasal cavity tumours | Readily binds to
organic matter in soil;
little leaching expected
in soils with high
organic and clay
content | | P | Metribuzin (1986,
2005) | 0.08 | | Leaching and/or
runoff from
agricultural use | Health basis of MAC:Liver
effects (increased incidence
and severity of
mucopolysaccharide
droplets) | J | | 0 | Monochlorobenzene
(1987) | 0.08 | AO: ≤ 0.03 | Releases or spills
from industrial
effluents | Health basis of
MAC:Reduced survival and
body weight gain | AO based on odour;
levels above the AO
would render water
unpalatable | | I | Nitrate/nitrite
(1987) | Nitrate:
45 as
nitrate;
10 as
nitrate-
nitrogen | Nitrite (if measured separately): 3.2 as nitrite; 1.0 as nitrite-nitrogen | Naturally occurring; leaching or runoff from agricultural fertilizer use, manure and domestic sewage; may be produced from excess ammonia or from microbial activity in distribution systems | Health basis of MAC:Methaemoglobinaemia (blue baby syndrome) in infants less than 3 months old (short term) Other: Classified as possible carcinogen | MACs are protective of
children and adults;
systems using
chloramine disinfection
or that have naturally
occurring ammonia
should monitor nitrite
and nitrate in
distribution system | | Table 2. | Chemical and Phys | ical Param | eters | | | | |-------------------------|---|---|---------------------------|--|---|--| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | I | Nitrilotriacetic acid
(NTA) (1990) | 0.4 | | Sewage
contamination | Health basis of MAC:Kidney effects (nephritis and nephrosis) Other: Classified as possible carcinogen | | | DBP | N-Nitroso
dimethylamine
(NDMA) (2010) | 0.000 04 | | By-product of
drinking water
disinfection with
chlorine or
chloramines;
industrial and
sewage treatment
plant effluents | Health basis of MAC:Liver cancer (classified as probable carcinogen) | MAC considers
additional exposure
through showering and
bathing; levels should
be kept low by
preventing formation
during treatment | | A | Odour (1979, 2005) | | Inoffensive | Biological or industrial sources | | Important to provide drinking water with no offensive odour, as consumers may seek alternative sources that are less safe | | P | Paraquat (1986,
2005) | 0.01 as
paraquat
dichloride;
0.007 as
paraquat
ion | | Leaching and/or
runoff from
agricultural and
other uses; added
directly to water to
control aquatic
weeds | Health basis of
MAC:Various effects on
body weight, spleen,
testes, liver, lungs, kidney,
thyroid, heart and adrenal
gland | Entry into drinking
water unlikely from
crop applications (clay
binding); however,
may persist in water
for several days if
directly applied to
water | | 0 | Pentachlorophenol
(1987, 2005) | 0.06 | AO: ≤ 0.03 | By-product of
drinking water
disinfection with
chlorine; industrial
effluents | Health basis of
MAC:Reduced body weight,
changes in clinical
parameters, histological
changes in kidney and liver,
reproductive effects
(decreased neonatal
survival and growth) | would render drinking water unpalatable | | Т | pH (1979) | | 6.5-8.5 Table 2 footnote4 | Not applicable | | pH can influence the
formation of
disinfection by-
products and
effectiveness of
treatment | | P | Phorate (1986,
2005) | 0.002 | | Leaching and/or
runoff from
agricultural and
other uses | Health basis of
MAC:Nervous system
effects (cholinesterase
inhibition) | Some potential to leach into groundwater | | P | Picloram (1988,
2005) | 0.19 | | Leaching and/or
runoff from
agricultural and
other uses | Health basis of
MAC:Changes in body and
liver weights and clinical
chemistry parameters
Other: Kidney effects (liver
to body weight ratios and
histopathology) | Significant potential to leach into groundwater | | I | Selenium (1992) | 0.01 | | Naturally occurring
(erosion and
weathering of
rocks and soils) | Health basis of MAC:Essential nutritional element Other: Hair loss and weakened nails at extremely high levels of exposure | Most exposure from
food; little information
on toxicity of selenium
from drinking water | | I | Silver (1986, 2005) | None
required | | Naturally occurring
(erosion and
weathering of | | Guideline value not required as drinking water contributes | | Table 2. | Chemical and Phys | ical Paran | neters | | | | |------------------------|---|---------------|-----------------------|--|--|--| | Type Table 2 footnote1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | rocks and soils) | | negligibly to an individual's daily intake | | P | Simazine (1986) | 0.01 | | Leaching and/or
runoff from
agricultural and
other uses | Health basis of MAC:Body
weight changes and effects
on serum and thyroid gland | decreases with | | I | Sodium (1979) | | AO: ≤ 200 | Naturally occurring
(erosion and
weathering of salt
deposits and
contact with
igneous rock,
seawater
intrusion); sewage
and industrial
effluents; sodium-
based water
softeners | | Based on taste; where
a sodium-based water
softener is used, a
separate unsoftened
supply for cooking and
drinking purposes is
recommended | | I | Sulphate (1994) | | AO: ≤ 500 | Industrial wastes | High levels (above 500 mg/L) can cause physiological effects such as diarrhoea or dehydration | Based on taste; health
authorities should be
notified of drinking
water sources
containing above 500
mg/L | | I | Sulphide (1992) | | AO: ≤ 0.05 | Can occur in the
distribution system
from the reduction
of sulphates by
sulphate-reducing
bacteria; industrial
wastes | | Based on taste and
odour; levels above the
AO would render water
unpalatable | | A | Taste (1979, 2005) | | Inoffensive | Biological or industrial sources | | Important to provide drinking water with no offensive taste, as consumers may seek alternative sources that are less safe | | T | Temperature (1979, 2005) | | AO: ≤ 15°C | Not applicable | | Temperature indirectly affects health and aesthetics through impacts on disinfection, corrosion control and formation of biofilms in the distribution system | | P | Terbufos (1987, 2005) | 0.001 | | Leaching and/or
runoff from
agricultural and
other uses | Health basis of
MAC:Nervous system
effects (cholinesterase
inhibition) | Based on analytical achievability | | 0 | Tetrachloroethylene (1995) | 0.03 | | Industrial effluents
or spills | Health basis of MAC:Increased liver and kidney weights Other: Classified as possible carcinogen; limited evidence of an increased risk of spontaneous abortion | Readily leaches into
groundwater; MAC
considers additional
exposure through
showering and bathing | | 0 | 2,3,4,6-
Tetrachlorophenol
(1986, 2005) | 0.1 | AO: ≤ 0.001 | By-product of
drinking water
disinfection with
chlorine; industrial
effluents and use | Health basis of MAC:Developmental effects (embryotoxicity) | AO based on odour;
levels above the AO
would render drinking
water unpalatable | | Table 2. | Chemical and Phys | ical Paran | neters | | | | |-------------------------|---|---------------|-----------------------|---|--|--| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | of pesticides | | | | O | Toluene (1986, 2005) | | AO: ≤ 0.024 | Release of
effluents or spills
from petroleum
and chemical
industries | | AO based on odour;
levels above the AO
would render drinking
water unpalatable | | Α | Total dissolved
solids (TDS) (1991) | | AO: ≤ 500 | Naturally
occurring; sewage,
urban and
agricultural runoff,
industrial
wastewater | | Based on taste; TDS above 500 mg/L results in excessive scaling in water pipes, water heaters, boilers and appliances; TDS is composed of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, sulphate and nitrate | | 0 | Trichloroethylene
(2005) | 0.005 | | Industrial effluents
and spills from
improper disposal | Health basis of MAC:Developmental effects (heart malformations) Other: Classified as probable carcinogen | MAC considers
additional exposure
through showering and
bathing | | 0 | 2,4,6-
Trichlorophenol
(1987, 2005) | 0.005 | AO: ≤ 0.002 | By-product of
drinking water
disinfection with
chlorine; industrial
effluents and spills | Health basis of MAC:Liver cancer (classified as probable carcinogen) | AO based on odour;
levels above the AO
would render drinking
water unpalatable | | P | Trifluralin (1989, 2005) | 0.045 | | Runoff from agricultural uses | Health basis of
MAC:Changes in liver and
spleen weights and in
serum chemistry | Unlikely to leach into groundwater | | DBP | Trihalomethanes Table 2 footnote3 (THMs) (2006) | 0.1 | | By-product of
drinking water
disinfection with
chlorine; industrial
effluents | Health basis of MAC:Liver effects (fatty cysts) (chloroform classified as possible carcinogen) Other: Kidney and colorectal cancers | Considers the most commonly found THMs, namely chlorodibromomethane, chloroform, bromodichloromethane and bromoform; MAC based on health effects of chloroform and considers additional exposure through showering and bathing; precursor removal limits formation | | I | Uranium (1999) | 0.02 | | Naturally occurring
(erosion and
weathering of
rocks and soils);
mill tailings;
emissions from
nuclear industry
and combustion of
coal and other
fuels; phosphate
fertilizers | Health basis of MAC:Kidney effects (various lesions); may be rapidly reversible after exposure ceases | Based on treatment
achievability; MAC
based on chemical
effects, as uranium is
only weakly
radioactive; uranium is
rapidly eliminated from
the body | | 0 | Vinyl chloride
(1992) | 0.002 | | Industrial effluents; degradation product from trichloroethylene and | Health basis of MAC:Liver
cancer (classified as human
carcinogen)
Other: Raynaud's disease,
effects on bone, circulatory
system, thyroid, spleen, | | | Table 2. | Table 2. Chemical and Physical Parameters | | | | | | | | | |-------------------------|---|---------------|-----------------------|---|------------------------|--|--|--|--| | Type Table 2 footnote 1 | Parameter
(approval,
reaffirmation) | MAC
(mg/L) | Other value
(mg/L) | Common sources of parameter in water | Health considerations | Comments | | | | | | | | | tetrachloroethylene
in groundwater;
leaching from
polyvinyl chloride
pipes | central nervous system | | | | | | 0 | Xylene (1986,
2005) | | AO: ≤ 0.3 | Industrial effluents
and spills | | AO based on taste and odour; levels above the AO would render water unpalatable | | | | | I | Zinc (1979, 2005) | | AO: ≤ 5.0 | Naturally
occurring;
industrial and
domestic
emissions;
leaching may occur
from galvanized
pipes, hot water
tanks and brass
fittings | | AO based on taste;
water with zinc levels
above the AO tends to
be opalescent and
develops a greasy film
when boiled; plumbing
should be thoroughly
flushed before water is
consumed | | | | ### **Table 3. Radiological Parameters** Guidelines for radiological parameters focus on routine operational conditions of existing and new water supplies and do not apply in the event of contamination during an emergency involving a large release of radionuclides into the environment. Maximum acceptable concentrations (MACs) have been established for the most commonly detected natural and artificial radionuclides in Canadian drinking water sources, using internationally accepted equations and principles and based solely on health considerations. The MACs are based on exposure solely to a specific radionuclide. The radiological effects of two or more radionuclides in the same drinking water source are considered to be additive. Thus, the sum of the ratios of the observed concentration to the MAC for each contributing radionuclide should not exceed 1. Water samples may be initially analysed for the presence of radioactivity using gross alpha and gross beta screening rather than measurements of individual radionuclides. If screening levels are exceeded (0.5 Bq/L for gross alpha and 1.0 Bq/L for gross beta), then concentrations of specific radionuclides should be analysed. A guideline for radon is not deemed necessary and has not been established. Information on radon is presented because of its significance for indoor air quality in certain situations. | Table 3. Radiological Parameters | | | | | | | | |----------------------------------|-----|--|---|----------|--|--|--| | Parameter (approval) | II. | Common sources | Health basis of MAC | Comments | | | | | Cesium-137
(2009) | 10 | Nuclear weapons
fallout and
emissions from
nuclear reactors | Cancer of the lung, breast, thyroid, bone, digestive organs and | | | | | | Table 3. Radiological Parameters | | | | | | | | |----------------------------------|------------------|--|---|---|--|--|--| | Parameter (approval) | MAC
(mg/L) | Common sources | Health basis of MAC | Comments | | | | | | | | skin; leukaemia | | | | | | Iodine-131
(2009) | 6 | Sewage effluent | Cancer of the lung, breast, thyroid, bone, digestive organs and skin; leukaemia | | | | | | Lead-210
(2009) | 0.2 | Naturally occurring (decay product of radon) | Cancer of the lung, breast, thyroid, bone, digestive organs and skin; leukaemia | Corresponds to total lead concentration of 7×10^{-8} μ g/L | | | | | Radium-226
(2009) | 0.5 | Naturally occurring | Cancer of the lung, breast, thyroid, bone, digestive organs and skin; leukaemia | | | | | | Radon
(2009) | None
required | Naturally occurring
(leaching from
radium-bearing
rocks and soils;
decay product of
radium-226) | Health risk from
ingestion
considered
negligible due
to high volatility | Mainly a groundwater concern; if concentrations in drinking water exceed 2000 Bq/L actions should be taken to reduce release into indoor air (e.g. proper venting of drinking water supply) | | | | | Strontium-
90 (2009) | 5 | Nuclear weapons
fallout | Cancer of the lung, breast, thyroid, bone, digestive organs and skin; leukaemia | | | | | | Tritium
(2009) | 7000 | Naturally occurring
(cosmogenic
radiation);
releases from
nuclear reactors | Cancer of the lung, breast, thyroid, bone, digestive organs and skin; leukaemia | Not removed by drinking water treatment | | | |